Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFkappaB.

نویسندگان

  • S Y Na
  • B Y Kang
  • S W Chung
  • S J Han
  • X Ma
  • G Trinchieri
  • S Y Im
  • J W Lee
  • T S Kim
چکیده

Lipopolysaccharide (LPS) increases the production of interleukin-12 (IL-12) from mouse macrophages via a kappaB site within the IL-12 p40 promoter. In this study, we found that retinoids inhibit this LPS-stimulated production of IL-12 in a dose-dependent manner. The NFkappaB components p50 and p65 bound retinoid X receptor (RXR) in a ligand-independent manner in vitro, and the interaction interfaces involved the p50 residues 1-245, the p65 residues 194-441, and the N-terminal A/B/C domains of RXR. Activation of macrophages by LPS resulted in markedly enhanced binding activities to the kappaB site, which significantly decreased upon addition of retinoids, as demonstrated by the electrophoretic mobility shift assays. In cotransfections of CV-1 and HeLa cells, RXR also inhibited the NFkappaB transactivation in a ligand-dependent manner, whereas a mutant RXR lacking the AF2 transactivation domain, which serves as ligand-dependent binding sites for transcription integrators SRC-1 and p300, was without any effect. In addition, coexpression of increasing amounts of SRC-1 or p300 relieved the retinoid-mediated inhibition of the NFkappaB transactivation. From these results, we propose that retinoid-mediated suppression of the IL-12 production from LPS-activated macrophages may involve both inhibition of the NFkappaB-DNA interactions and competitive recruitment of transcription integrators between NFkappaB and RXR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene.

Interleukin 12 (IL-12), produced by myelomonocytic cells, plays a pivotal role in the development of T helper 1 (Th1) cells, which are involved in the pathogenesis of chronic inflammatory autoimmune disorders. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] inhibits IL-12 production by activated macrophages and dendritic cells, thus providing a novel interpretation to its immunosuppressive properties. 1...

متن کامل

Liver X receptor-dependent repression of matrix metalloproteinase-9 expression in macrophages.

Matrix metalloproteinases (MMPs) are zinc endopeptidases that degrade extracellular matrix (ECM) components during normal and pathogenic tissue remodeling. Inappropriate expression of these enzymes contributes to the development of vascular pathology, including atherosclerosis. MMP-9 is expressed in its active form in atherosclerotic lesions and is believed to play an important role in vascular...

متن کامل

Regulation of CD8+ T lymphocyte effector function and macrophage inflammatory cytokine production by retinoic acid receptor gamma.

Vitamin A and its derivatives regulate a broad array of immune functions. The effects of these retinoids are mediated through members of retinoic acid receptors (RARs) and retinoid X receptors. However, the role of individual retinoid receptors in the pleiotropic effects of retinoids remains unclear. To dissect the role of these receptors in the immune system, we analyzed immune cell developmen...

متن کامل

Retinoids Regulate Survival and Antigen Presentation by Immature Dendritic Cells

Maturation of dendritic cells (DCs) is a critical step for the induction of an immune response. We have examined the role of retinoid nuclear receptor pathways in this process. Retinoids induce DC apoptosis, in the absence of inflammatory signals, through retinoic acid receptor (RAR)alpha/retinoic X receptor (RXR) heterodimers. In contrast, via a cross talk with inflammatory cytokines, retinoid...

متن کامل

Retinoids, rexinoids and their cognate nuclear receptors: character and their role in chemoprevention of selected malignant diseases.

BACKGROUND Retinoids, rexinoids and their biologically active derivatives are involved in a complex arrangement of physiological and developmental responses in many tissues of higher vertebrates. Both retinoids and rexinoids are either natural or synthetic compounds related to retinoic acids that act through interaction with two basic types of nuclear receptors belonging to the nuclear receptor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 12  شماره 

صفحات  -

تاریخ انتشار 1999